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CHEMEQ2: A Solver for the Stiff Ordinary Differential 

Equations of Chemical Kinetics 

1    Introduction 

This report documents CHEMEQ2, the latest version of the FORTRAN package CHEMEQ [1,2].   The 

CHEMEQ2 routines integrate sets of coupled, nonlinear ordinary differential equations (ODEs) of the form 

-^■=9i = qi-Piyi,        1 <*'<«> (1) 

where t/,- is the density of the ith species and <;,• is its rate of change. Our primary application of Eq.(l) is to 

sets of coupled, nonlinear ODEs that represent chemical reaction sets. In this case, the dependent variables 

{y,-} are concentrations or densities of reacting chemical species. Sometimes this equation is supplemented by 

another equation for the change in temperature or energy release that results from the species' interactions. 

The source term gi, which is a function of the concentrations and the thermodynamic state, may be written as 

the difference of the production rate q, and the loss rate piyi- The timescales rt- = 1/pi for the various species 

differ by many orders of magnitude and there may be strong coupling between species (i.e., the Jacobian 

matrix dgi/dyj has significant off-diagonal elements). Under these circumstances, the set of equations 

represented by Eq. (1) is considered stiff and does not lend itself readily to numerical solution by classical 

methods such as the low-order Euler methods or higher-order Adams-Moulton methods [3-5]. Such a system 

then requires special techniques to obtain an accurate solution efficiently. 

The coupled reaction set represented by Eq. (1) is often a part of a larger model that solves these equations 

coupled to the partial differential equations describing fluid dynamics. In such cases, chemical reactions are 

only one of several processes that might, for example, include advection, diffusion, or radiation transport. 

The numerical methods commonly used to solve such chemically reacting flows use process splitting (or 

operator splitting) [5]. The basic idea in operator splitting is to calculate the effects of individual physical 

processes separately for a chosen global timestep Atg, and then combine the results in some way. Each 

process in turn can change different system variables during Atg. Then, when it is time to integrate the 

ODEs representing the chemical changes during Atg, the integrator is presented with a new initial value 
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problem in each computational cell. The integrator must therefore solve 

~j^=Si,    yi{n = Vi l<i<n, (2) 

to t = t° + Atg. The ODE integration may subdivide At, into smaller steps, At, to obtain an accurate, 

stable solution. Here, the timestep At is called the chemical Umestep because it is the timestep that the 

ODE integrator uses to advance the chemical reactions. The size of At generally varies during the course of 

the calculation. 

Given that fluid dynamic calculations are seldom accurate to better than a few percent, any requirement 

of the chemical integrator to calculate the species concentrations more accurately than a few tenths of a 

percent is usually excessive. Therefore, the chemical integrator may be relatively low-order. Also, since 

the integrator must solve multiple initial value problems "from scratch" at every global timestep, it is 

necessary to use a single-point method, requiring information only from the current time level to calculate 

the concentrations at At. This is in contrast to multi-point methods that must store concentration or source- 

term values from several successive timesteps in order to advance the solution. Within the calculation for a 

given Ats, multi-point methods have a start-up penalty until a sufficient number of steps have been taken to 

build the history required for the calculation, and they often require interpolation procedures if At changes 

during the integration. The chemistry integration from the previous At, does not provide the history needed 

to restart the integration because the fluid dynamics calculation changes the state. The values at the end of 

the previous chemistry integration are therefore not the values at the start of the next chemistry integration. 

By comparison, a single-point method has minimal start-up penalty at the beginning of an integration step 

and there is never a fluid dynamic inconsistency. 

CHEMEQ [1,2] is a second-order single-step ODE integrator that has been used successfully as a part 

of a number of different types of reacting-flow codes. These have included applications to combustion [6-10] 

and solar phys.cs [11-13]. CHEMEQ is a hybrid method, which means it chooses between a stiff method 

and a non-stiff method for integrating each ODE within the system depending upon the timescale of that 

equation. CHEMEQ has been shown to outperform standard stiff ODE solvers by a factor of 50-100 in speed 

in validation studies on chemical integrations alone (i.e., not coup.ed to fluid dynamics) when only moderate 



accuracy was required [1]. More recently, an integrator based heavily on CHEMEQ outperformed a first-order 

quasi-steady-state method and the implicit preconditioning method CHEMSODE [30] on a photochemical 

smog problem [29]. Despite its strengths, CHEMEQ exhibits instability under some situations and is limited 

in the accuracy it can achieve [19]. 

This report describes a quasi-steady-state method which we call a-QSS, and its implementation in the 

subroutine CHEMEQ2. The a-QSS method is A-stable for linear problems and second-order accurate. It 

is more stable, more accurate, and costs less than CHEMEQ, and it successfully integrates some systems 

for which CHEMEQ fails [19]. CHEMEQ2, has been used successfully in hydrogen-air flame studies in mi- 

crogravity [16], on pulse-detonation engine studies [17,18], on thermonuclear mechanisms used in supernova 

simulations, and on the test cases used to validate CHEMEQ [19]. In addition to describing the new algo- 

rithm, we present error and linear stability analyses. We also describe how to use the subroutine CHEMEQ2 

as a stand-alone integrator and in conjunction with a reacting-flow code. Variables used in CHEMEQ2 

are listed and documented in Appendix A, and results obtained using CHEMEQ2 are compared to those 

obtained using CHEMEQ on two test problems. Finally, code listings for CHEMEQ2 and its supporting 

subroutines are also included. 

2    Introduction to QSS Methods 

Consider a simplified form of Eq. (1), in which the subscript i is dropped for convenience, t° = 0, and 

y(t°) = y°, 

f = q-py     y(0) = j/°. (3) 

If p and q are constant, then Eq. (3) has an exact solution given by 

j/(i) = y°e-^ + i(l-C-'>(). (4) 

Quasi-steady-state (QSS) methods are based on the solution given in Eq. (4) [21-24]. If q and p are slowly 

varying, evaluating Eq. (4) at t = At using q(t°) and p(t°) provides a good approximation for y(At). This 

approach gives a first-order method which is the simplest QSS algorithm. More sophisticated QSS algorithms 

incorporate the time dependence of p and q and may place Eq. (4) into an alternate algebraic form. The 



common thread between QSS methods is their basis on Eq. (4), which requires the methods to return the 

exact solution if, and p are constant. There are many QSS methods documented in the literature, and the 

or-QSS method is compared to several of them in Section 3.2. 

Note that if PAt -. oo (i.e., the ODE timescale is very small compared to the numerical timestep), the 

exponential terms in Eq. (4) may be neglected completely, leading to the steady-state approbation  [31] 

P (5) 

Since q and p are functions oft, a steady-state approximation for species i does not imply that the value 

of Vi remains constant. Equation (5) assumes that the adjustment toward a «local» equilibrium for species 

i based on the current values of* and Pi is instantaneous. In contrast, quasi-steady-state methods retain 

information about the transition to equilibrium and are therefore more accurate for larger timescales. Note 

that some authors call Eq. (5) a quasi-steady-state approximation [32], emphasizing the continued evolution 

of Vi as ,, and Pi change. In this paper, the label "quasi-steady state» is reserved for methods that reproduce 

the solution in Eq. (4) for constant , and p regardless of the timescale. 

QSS methods are often compared with standard stiff solvers such as LSODE [25,26], which is a variable- 

order method based on Gear's backward differentiation formulae (BDF) [27]. However, such comparisons 

have been largely limited to the integration of a single problem from one set of initial conditions, not 

reacting-flow simulations in which start-up overhead and storage requirements play key roles in the overall 

efficiency of the integrator. Verwer and Simpson describe one such test from atmospheric chemistry, in which 

a simple two-step BDF method outperforms a first-order implicit QSS method and a two-stage explicit QSS 

method. The test involved the calculation of emissions and was not coupled to fluid dynamics [22]. Jay et al. 

introduce two QSS methods and examine their performance on a set of atmospheric tests involving 32 species 

[21]. These two QSS methods outperformed both a standard, first-order QSS method and CHEMEQ, but 

the methods were slower than multi-point BDF methods. Variab.e-order, multi-point BDF methods often 

outperform QSS methods when the chemistry integration stands a.one. However, the demands of a reacting- 

flow applied are very different than those of a stand-alone integration, and the conclusions of these studies 

cannot be applied to reacting-flow prob.ems. The o-QSS algorithm was developed specifically to meet the 



demands of a process-split, reacting-flow simulation. 

3    The a-QSS Algorithm 

3.1    Algorithm Development 

Given the demands of a reacting-flow application, we chose a predictor-corrector implementation for the 

integrator. Evaluating Eq. (4) at At using initial values serves as the predictor step, and a correction based 

on the initial and the predicted values then follows. The corrector step can be repeated using the previous 

corrector result as the new predicted value. Predictor-corrector methods of this type are single-point methods 

because information from only a single time level is needed to initiate calculation of the solution at the next 

time level. 

First, a convenient algebraic form for Eq. (4) was chosen.   Equation (4) can be evaluated at t = At, 

yielding 

»<-> = »» +«i, (6, 

for a defined by 

i   K*\      l-(l-e-pA()/(pA2) 
<*(P A<) =      l-e-pi' ■ (7) 

The parameter a is a function of p At, as shown in Fig. 1. Note that a —► 0 as p At —> —oo, a —> 1 as 

p At —► oo, and a = 1/2 for p At = 0. The meanings of these limits are clarified by recalling that pAt = At/r. 

The a -+ 1 limit corresponds to an infinitely fast ODE relative to At, and a = 1/2 corresponds to an infinitely 

slow ODE. Equation (6) is exact for any value of p (provided q and p are constant). However, we split, g such 

that py is a non-negative loss rate, so only values of pAt > 0 need be considered. Approximations used to 

calculate a(pAt) without the costly exponential evaluation are described in Section 4.1. 

A predictor-corrector method based on the solution in Eq. (6) takes the form 

. 0      At (q° - p°y°) 
yp=y+ i+cfiLy predictor- ^ 

r        o      At(q* —p*y*) 
y   =y  +    ,1    . A/. Corrector. (9) 1 + Q* At p* v  ' 
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Figure 1: The parameter a as a function of pAt. 



Superscript 0 indicates initial values, and superscripts p and c indicate predicted and corrected values, 

respectively. The predictor uses the initial values of q, p, and y, but the "starred" variables (q*, p*, j/*, and 

a") can be based on both the initial values and the predicted values. 

If we assume linear profiles in time for q and p between the initial and predicted values, we can find 

an exact series solution for Eq. (1). (This solution is illustrated in conjunction with the error analysis in 

Section 3.3.) Unfortunately, the series solution does not readily provide an efficient integration technique, nor 

does it indicate appropriate averages for the starred variables in the corrector. However, solutions do exist 

under slightly simpler conditions that can be reproduced with appropriate choices of the starred variables. 

For instance, if p is constant and q is linear in time, the exact solution to Eq. (1) can be written as 

rtAo^+^zga (10) 
1 + a At p v    ' 

for a = a(pAt) from Eq. (7) and 

q = aq(At) + (l-a)q°. (11) 

Alternatively, if q = 0 and p is linear in time, the exact solution of Eq. (1) is 

1 + a At p v    ' 

phich 

P=2(p(Ai)+P°), (13) 

and 57 = a(pAt) from Eq. (7). 

These results suggest a corrector of the form 

0      At(q-py°) 
y =y + , T-AV-- (14) 1 + a Alp v    ' 

To calculate q and p from Eqs. (11) and (13), we replace q(At) and p(At) with the predicted values qP and 

pP. When q and p are known functions of t, the predicted values are replaced with the exact values at At. 

Using {q,p,y°,a} for {q*,p*,y*,Q*} in Eq. (9) gives a method which is A-stable for linear problems and 

second-order accurate, as is shown in Sections 3.3 and 3.4.  We refer to the new method as a-QSS, which 



uses 

uses 

emphasizes the dual role that a plays in returning the exact solution for constant q and p and in providing 

a weighted average of q when q is not constant. 

3.2    Comparison to Previous Methods 

In addition to the algebraic form chosen for Eqs. (8) and (14), a-QSS differs from previous QSS methods 

in its choice of averaging and its implementation as a predictor-corrector method. Previous methods that 

calculate average values for p and q use the same averaging method for both terms. For example, the two- 

stage explicit method introduced by Verwer and Van Loon [23] and tested by Verwer and Simpson [22] 

a simple algebraic average for both q and p calculated from initial and predicted values. CREK1D [24] 

an implicit exponential Euler formulation in which a(pAt) gives a weighted average of the composite source 

terms: 

y(At) = y°+At (ag(At) + (1 - a)g°) . (15) 

In contrast, the a-QSS algorithm uses a simple algebraic average for p and an a-weighted average for q in 

order to match the exact solutions described in Eqs. (10) and (12). 

Other QSS methods combine the results of first-order calculations in a way that improves accuracy. Jay 

et. al. [21] describes two such methods. Their "extrapolated QSS" method finds the solution at <° + At, first 

with a single step and then with two steps of At/2 each. A simple extrapolation then estimates the solution 

that would result if an infinitely small timestep were used. Their second method, "symmetric QSS," is a 

two-step method requiring three evaluations of the source terms. Each of these steps acts as if q and p were 

constant, and the values for q and p are taken at the same time level based on the previous calculation. No 

averaging of q or of p occurs between time levels in these methods. 

The algebraic form of Eqs. (8) and (14), which was introduced in Eq. (6), is based on the asymptotic 

update employed by CHEMEQ when the timescale for an equation is smaller than some user-specified value 

[1,2]. However, CHEMEQ effectively replaces a(pAt) with the constant 1/2, which is equivalent to choosing 

the Pade approximation 

exp(z) ^ —- (16) 



in either the definition of a or in Eq. (4). When the timescale for an equation is larger than some user-specified 

value, that equation is integrated using the modified Euler method. The hybrid method studied by Lorenzini 

and Passoni [29] uses CHEMEQ's update equations but different criteria for determining the timestep and 

for choosing between the asymptotic update and the modified Euler update. CHEMEQ's asymptotic update 

also uses different averages in the corrector for p and q than those used in Eq. (14). These differences lead 

to instability in CHEMEQ that is discussed more thoroughly in Section 6.1. The averages chosen by a-QSS 

eliminate this instability, and a-QSS automatically approaches the modified Euler method as pAt —»■ 0. 

3.3    Error Analysis 

The method has a third-order error term for a single step, which makes it second-order over the course of 

an integration. This can be shown by examining the exact series solution of Eq. (1). Writing the series for 

y(t) about y(t° = 0) = y0, 

oo 

y(t) = yo + yit + y2t2 + ... = Y,yj tJ> (17) 
i=o 

the derivative is given by 

• °° 
-£ = Vi + 2y2< + +3j/3<2 + • • • = ^JVj <i_1- (18) 

i=i 

This development deals with a single species, y, so yj is the coefficient of the t3 term in the expansion in 

Eq. (17) and not the concentration of the jth species in a multi-species system. Similarly, series expansions 

for q(t) and p(t) are given by 

«(*) = £«,•*'■. (19) 
i=o 

p(o = !><''• (2°) 
j=0 

Substitution into Eq. (1) using Eqs. (17)-(20) gives 

yi = qo -poyo, (21) 

2/2 = 2(91 ~(Pi 2/o+Po2/i)), (22) 

2/3 = 2 («2 - O'22/o + Pi2/1 + P02/2)), (23) 



and leads to the general expression 

yi = ] ( «>-i - ^Pj-i-kVk J (24) 

for j > 0. (The exact solution for q and p both linear in time that was mentioned in Section 3.1 is obtained 

by assuming pj = qj = 0 for j > 2.) 

In general, , and p are given as functions of y, not as functions of t. Therefore, the coefficients in 

Eqs. (19) and (20) are not known, and Eq. (3) is a nonlinear differential equation. We will first perform an 

error analysis for the linear version of Eq. (3), in which , and p are known functions of t, and then extend 

this analysis for the nonlinear case. For the linear case, the predicted values are simply f = q(At) and 

f = p(At). Subtracting the series expansion for Eq. (14) from the exact solution evaluated at t = At yields 

y{At) ~yc = ~ [~Piq0 - q2+P2yo) 

+ 0(At4)        [linear case] (25) 

The leading error term is O(At^) per timestep. Since the number of timesteps required to reach a given time 

is proportional to l/At, the error for the method is second-order when these errors all reinforce [3]. Note 

that this error term disappears for constant p and linear q (which gives Pl = q2 = p2 = 0) and linear p with 

g = 0 (which gives q0 = q2=P2 = 0). These two cases were used to choose how to calculate the starred 

variables in Eq. (9), and the method is exact for either case. 

The method is second-order for nonlinear problems as well. To illustrate this, first note that the leading 

error term for the predicted values yP is second-order: 

At2 

y(At) -jf = __(9l _ piyo) + 0(At3). (26) 

Since q and p are polynomials in the species concentrations for the nonlinear systems representing reaction 

kinetics, the leading error terms for the predicted values «f and ? are also second-order. This error can be 

represented as 

q(At) - q» = („At2 + 0(A/3), (27) 

p(At)~}f = epAl2 + 0{At3), (28) 

10 



for some unknown coefficients eq and cp. Using these predicted values in Eq. (14) gives an error term of the 

form 

y(At) - yc = At   I-—Pi?o - ^2 + gP22/o + ^i ~ 2€f>y°) 

+ 0(At4)       [nonlinear case]. (29) 

As with the linear problem, the leading-order error term for the nonlinear problem is 0(At3) per timestep, 

so the method is still at least second-order over the course of an integration. 

3.4    Linear Stability Analysis 

For the single linear equation 

* = *», P«) 

the coefficient A can be a function of t but not a function of y. Using the average value A given by 

A=i(A(t = 0) + A(t = A0), (31) 

a-QSS has amplification factor G given by 

G=l + ^^. (32) 
1-äAA* v   ; 

The signs in Eq. (32) reflect the fact that A = —p, and note that ä = a(—XAt). Using Eq. (7), the expression 

for G simplifies to 

G = exp(XAt). (33) 

For A = a + by/— 1 with a, b both real, the magnitude of G is simply 

||G|| = exp(aA<). (34) 

Since ||G|| < 1 for a < 0 for any value of b, the method is A-stable. This does not prove that a-QSS is 

A-stable when applied to nonlinear systems of ODEs for which {pi} and {<j;} depend on {t/,}. However, 

in testing to date, the accuracy-based timestep criterion used originally in CHEMEQ has worked well for 

a-QSS. To ensure that stability is maintained when the corrector is iterated, a new stability check was 

introduced [20] for At. These accuracy and stability criteria are discussed in Section 4.2. 

11 



4    CHEMEQ2 Implementation 

4.1    Update Equations 

CHEMEQ2 uses the a-QSS update on all equations in the system regardless of the timescale of the ODE. 

This makes the timestep less prone to oscillations than for hybrid methods (like CHEMEQ) that switch 

between update methods. In addition, iterations may be done on the corrector that improve the accuracy 

of the result. 

Again using a superscript 0 to indicate values at the begining of the chemical timestep and a subscript i 

to specify species i, the a-QSS update is given by 

^_J/i+   l + a?A<p? Predictor, (35) 

c_  0    At(qi-Piy°) 
Vi ~Vi +    1+äjAtW Corrector- (36) 

The predictor uses all initial values, and a? = a(p?A*). After calculating the predicted concentrations {tf) 

for all of the species in the system, next obtain {«?} and {p?} from {j/f }. Then calculate 

w = 5fr?+rf). (37) 

evaluate a, = a(p^At), and finally 

fc = <Mf + (l-57)rf. (38) 

These averages are then used to calculate yf, and to iterate on the corrector, use the value for yf from one 

step as j/f for the next step. 

Having an accurate approximation for *(PAt) that does not require an evaluation of the exponential 

function makes the method given by Eqs. (35) and (36) more attractive. Recall that p is strictly non-negative 

based on the way the chemical source term is split, so this approximation need only hold for positive values 

of p At. Equation (7) indicates that as pAt -+ oo, a reasonable approximation for a(p At) is 

a(pA')Ril-i- (39) 

12 
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r=1/(pAt) 
0.5 

Figure 2: Approximations for a as a function of r = l/(pAt). 

Using this approximation for a eliminates the need to find an accurate approximation for e~x as x —* oo, as 

would be required if the solver were based on Eq. (4) rather than Eq. (6). Using the Pade approximation [4] 

_      1680 + 840a; + 180a;2 + 20a;3 + x4 

1680 - 840a; + 180a;2 - 20x3 + xA (40) 

in the definition of a(p At) gives 

a(A</r) 
840r3 + 140r2 + 20r + 1 

(41) 
1680r3 + 40r 

for r = l/(pAt). These two approximations are shown with the exact curve for a in Fig. 2. The approxi- 

mation given by Eq. (41) is labeled Pade (a). Note that unlike Fig. 1, the a:-coordinate in Fig. 2 is r/Ai. 

The linear approximation in Eq. (39) is closer to the exact value of a than the approximation in Eq. (41) for 

r < 0.16762; for r > 0.16762, Eq. (41) is more accurate. Therefore, the better approximation can be chosen 

based upon the value of r. This combined approximation differs from the exact value of a by at most. 0.3%. 

This error occurs in a narrow region around the transition from the linear to the rational approximation. 

As »■ —► oo, Eq. (41) is actually better behaved numerically than Eq. (7), which requires the exponential 

function evaluation. 

13 



A second approximation for a that can be used alone (i.e., does not require the linear approximation, 

Eq. (39), to take over as r -► 0) results from the Pade approximation 

360 + 120x + 12x2 

This approximation gives 

360 - 240* + 72x2 - 12a;3 + x4 ' (42) 

a{At,r) « j^; + 60r2
+llr+l 

'   '     360r3 + 60r2+12r+T (43) 

This second approximation for a is designated Pade (b) and is also shown in Fig. 2. Since this approximation 

recovers a = 1 for r/At = 0, Eq. (43) can be used alone with only a slight accuracy penalty compared to 

the combined approximation of Eqs. (39) and (41). In testing to date, this accuracy penalty in a has not 

caused accuracy problems in the species solutions, and using this single equation eliminates the logic check 

required to determine which of Eqs. (39) or (41) to use for the combined method. The success of CHEMEQ, 

which effectively uses a = 1/2, suggests that an even simpler approximation for a(PAt) than those shown 

here may provide sufficient accuracy with lower computational cost. 

4.2    Timestep Selection 

Accuracy is controlled by choosing A* and the number of corrector iterations, Nc. A single corrector 

calculation is performed if Arc = 1, and as Appendix B illustrates, increasing Nc improves accuracy. Timestep 

selection is identical to that used by CHEMEQ [2]. The initial predicted values and final corrected values 

are tested to see if they satisfy 

iitf-»rii<<tf (44) 

for some specified constant e, typically ~ l0->. If Eq. (44) is not satisfied, the step is repeated with a smaller 

timestep. As Young notes [2], it is best to reduce the timestep sharply (a factor of 2 or 3) rather than slowly 

as less time is wasted finding a step size sufficiently small for convergence.   However, if the convergence 

criterion is met easily during the iteration, it is best to only increase the step size by 5-10% each step [2]. 

The timestep modification is performed by modeling the difference between predictor and corrector as a 
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single second-order term. Choose 0,2 such that 

yf-S?=a2(A0L, (45) 

where (Atf)0/<f is the timestep used to calculate y? and yf from the initial conditions. The user specifies a 

target value for the relative magnitude of this correction term, given by 

\\a2At2\\iarget=eyl (46) 

The values of e in Eq. (44) and e in Eq. (46) are related by 

e = ce (47) 

for some user-specified c > 1, so the error criterion in Eq. (44) is rarely violated for the chosen timestep. 

Defining the parameter cr as 

^»(ütjffl), m 

the value of At that limits the largest relative concentration change to the target magnitude is 

(At)tarset = ^1. (49) 

Again, the difference \\yf — t/f || is calculated using the initial prediction for y? and the final corrected value 

°fyf. 

In CHEMEQ2, the new timestep is calculated using 

(At)new = (AOOM ( -pr + 005 j . (50) 

In Eq. (50), yfo is an estimate by three Newton iterations for y/a using a as the starting value. Equation (50) 

gives the desired asymmetrical property in that At decreases faster than Af would increase for the inverse 

value of cr. In addition, At is modified very little when cr is near 1. 

If Eq. (44) is satisfied, the new concentration values at t — t° + (At)0u are set equal to the values of 

y\ and the integration continues with timestep (At)new. A successful integration step requires only two 

derivative function evaluations when a single corrector step is used, and the timestep selection algorithm 

minimizes the number of steps that must be repeated. 
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When m is decaying toward zero, it is constrained by a minimum value. When this lower bound is 

reached, the species is no longer considered in the calculation of a and therefore does not affect convergence. 

The lower bound is chosen by the user and must be selected to insure that it does not adversely affect the 

accuracy of the solution. If the minimum value is too high, a species value could freeze prematurely. This 

could corrupt the solution for other species whose values are sensitive to the frozen species. If the minimum 

is too low, it can affect efficiency if the decaying mode controls the timestep. Thus it is better to choose 

minimum values that are too small rather than too big. This may slightly reduce computational efficiency, 

but it will also reduce the possibility of calculating an incorrect solution. 

As mentioned in Section 3.4, a-QSS is A-stable for linear problems, but this result holds no guarantees 

for the nonlinear systems of chemical kinetics. To ensure that the calculation remains stable, the integrator 

can monitor the convergence of the corrector iteration and adjust the timestep if necessary. Let yf> denote 

the corrected value of W(A<) after / iterations. The change from one iteration to the next, 

Ayf^y?»-^ (5i) 

should decrease in size as / grows if the iteration is stable. Therefore, requiring that 

IIA^II < \\Ay?»*-\ (52) 

where Nc is the specified maximum number of iterations, ensures that the integration remains stable. A step 

using At that satisfies the accuracy constraint but fails to satisfy Eq. (52) for any i is repeated using a new 

timestep, (At)new, given by 

•    VHAi^H+ 0.00iy (53) 

This instability is generally not seen in «acting-flow applications, so a more sophisticated criterion and 

timestep update have not been pursued. The constraint is available in CHEMEQ2, however, should it be 

needed. 

At start-up, an initial timestep is chosen which approximates the timestep that will be determined by 

the predictor-corrector scheme. This initial trial timestep is determined such that none of the variables wiil 

change by more than a prescribed amount. If the formation rate ,,- is much larger than the loss rate WK, 
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it is reasonable to assume that qi and p,- will remain relatively constant for large changes in t/t-. The initial 

change in y, may be large enough to equilibrate the formation and loss rates for t/{. Thus the initial trial 

timestep is chosen as 

At = e min f 4, or (if # > p.-j/i) 1/pi J , (54) 

where e is a scale factor that need not be identical to the constant used in Eq. (44). Equation (54) is used only 

once per global timestep, as subsequent timesteps taken until the end of the global timestep are determined 

using Eq. (50). 

The effect of the thermodynamic state on the the reaction rate constants has been ignored in the previous 

developments. The rate constants are often calculated once before the predictor step using the initial values 

and held constant during the corrector step. A new thermodynamic state is then found at the new time 

level and used for the following predictor and corrector. If the integration is particularly sensitive to the 

thermodynamic state, this state can be recalculated for the corrector using the predicted solution. If the 

system requires the integration of a thermodynamic variable (such as temperature) along with the species 

concentrations, then the source term for this extra variable is split just as with the concentrations. If there is 

no "loss" term for that variable that can be assumed proportional to the variable, then the entire source term 

is assigned to q, and the method reduces to the modified Euler method for that equation since <*(0) = 1/2. 

5    How to Use CHEMEQ2 

The following sections describe what a user must know about CHEMEQ2 in order to use the subroutine 

effectively. A description of the four entrance points for the subroutine and the argument variables used 

for each is included, as are diagrams indicating the calling sequence used in a stand-alone integration and 

in a reacting-flow application. Appendix A describes all internal variables, and Appendix B provides code 

listings. 

CHEMEQ2 is designed as a replacement for CHEMEQ, so most, of the original CHEMEQ code is retained 

in CHEMEQ2. The overall logical structure from CHEMEQ is retained, with the hybrid method replaced 

with a-QSS. Minor changes in input/output have also been implemented, and these are discussed in the 
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following section. 

5.1    Entry Points 

1. CHEMEq2(dtg,gsub,n,y) is the main entrance point and is used to advance the chemical variables in 

time. 

• dtg: time for which the integration is performed; Atg of Section 1. 

• gsub: name of the derivative function evaluator subroutine that provides the source term as , 

and py. The form of gsub and its arguments are given in Section 5.2. 

• n: then number of equations to be integrated 

• y: array which holds the initial values at the start of the integration and returns the final values 

at the end of the integration 

2. CHEMSPCepsan, ePsmx, dtmn, tnot, itennx, ns, ,», prt) provides a means to set the solution 

parameters used the next time CHEMEQ is called. If the passed variable has value < 0, then the 

default value built into the subroutine is used. If the passed value is > 0, then the corresponding 

parameter is set to the passed value. For a typical calculation in which the same solution parameters 

are used throughout the domain, this routine may be called only once to initialize these parameters. If 

the simulation involves multiple regions that make different demands on the speed or accuracy of the 

integration, then this routine may be called so that appropriate parameters are used in each region. 

The parameters set by each variable and the default value for these parameters are listed below. The 

distinction is made between the arguments of CHEMSP and the internal variables. 

. epsmn: sets epsmin, the accuracy parameter e in Eq. (46) for determining the timestep. Default 

value of epsmin: 10-2. 

• epsmx: sets epsaax, the parameter c in Eq. (47) for specifying when a step must be repeated 

using a smaller timestep. Default value of epsmax: 10. 

• dtmn: sets dtmin, the minimum allowed timestep. Default value of dtmin: lO"15. 
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• tnot:  sets tstart, the value of the independent variable at the start of the global timestep. 

Default value of tstart: 0. 

• itermx: sets itermax, the number of corrector iterations performed. Default value of itermax: 

1 (a single corrector step). 

• ns: integer that indicates the number of entries in ymin to initialize with ymn 

• ymn: sets ymin, the array which holds the minimum allowed values of the dependent variables (for 

integration control). Default value of ymin(i): 10-20 for all values of i. 

• pit: if prt = 0, the list of parameters set by the current call to CHEMSP is printed. 

3. CHEMCT(tmk) provides diagnostics by printing the number of derivative function calls and the number 

of times an integration step was redone due to a violation of the accuracy criterion or the stability 

criterion. 

• tmk: REAL number used to identify the call; the value of the independent variable is often used. 

4. CHEMPR(y ,n) is called for diagnostic purposes and prints partial lists of internal variables. The variable 

definitions are the same as those in the CHEMEQ2 call. 

5.2    Supporting Subroutines 

1. CHEMER is a diagnostic routine which warns the user that the minimum timestep threshhold has 

been violated and that the integration has been stopped. No arguments are required. The user may 

supply additional error-checking capabilities or diagnostic output. 

2. gsub(y, q, d, t) is the derivative function evaluator. The actual name of this subroutine is passed 

to CHEMEQ2 as an argument. This is so the routine can be changed in different regions or regimes. 

• y: array holding the dependent variables 

• q: production terms; entry q(i)= <?,; in Eq. (1). 

• d: loss terms; entry d(i)= p^y,- in Eq. (1). 

• t: current value of the independent variable 
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Calculate initial conditions, 
control parameters 

CallCHEMSPto 
set integration 

parameters 

CallCHEMEQ2to 
perform integration 

Stop) 

Figure 3: Basic calling sequence to obtain final values 

5.3    Calling Sequence 

If the user simply needs the species concentrations at tfinal for a single problem, the basic calling sequence 

illustrated in Fig. 3 should be used. A single call to CHEMSP is required to initialize the integration 

parameters unless all default values are used, and dtg = t}inal. Using the version of CHEMEQ2 included in 

this report, no intermediate values are provided between * = 0 and tJinal. The driver program included in 

Appendix C has this structure imbedded in a loop that scrolls through various solution parameters to give 

a set of final values. If intermediate values are desired, a write statement can be added within CHEMEQ2 

in order to print the results of a successful step before the next step is taken. To obtain intermediate values 

without altering CHEMEQ2, the integration time tJinal may be broken-up as illustrated in Fig. 4. After each 

Atg step, control returns to the driver program and values may be printed. The next step in the integration 

is taken, and the result of the previous step is used as the initial condition. The optional CHEMSP call is 

needed if the source terms depend on * (such as in atmospheric chemistry) or if the solution parameters are 

to be changed (i.e., perhaps the initial time interval is very sensitive and must be run more accurately, but 

later tunes allow this constraint to be loosened). Variables changed via CHEMSP and passed as arguments 

to CHEMEQ2 may be moved if necessary for efficiency. Please see the Section 5.4 for a discussion of some 
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Calculate initial conditions, 
control parameters 

CallCHEMSP 

set At 

optional CALL CHEMSP 

CallCHEMEQ2 

Print diagnostics, 
reset At 

t=t + At 

Yes 

Figure 4: Calling sequence for a single-point integration that allows access to intermediate values. 

practical aspects of using CHEMEQ2. 

Figure 5 illustrates the use of CHEMEQ2 in a reacting flow code. The effects of the fluid dynamics are 

calculated by a separate algorithm, and then the conditions in each compuational cell are sent to CHEMEQ2 

separately to calculate the effects of the chemistry. This is the simplest implementation for reacting flow, 

and as mentioned earlier massively parallel versions of CHEMEQ have been implemented [14,15]. In general 

the optional calls to CHEMSP will not be needed since the solution parameters set by CHEMSP will be 

the same for all cells. If CHEMSP must be called repeatedly, the logical check that determines whether 

information about the call to CHEMSP is printed can be removed. 
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Calculate initial conditions, 
control parameters 

CallCHEMSP 

advance fluid dynamics At using 
 fluid dynamics routines 

* 
i = 1 

r.  r-; 
| optional CALL CHEMSP | 

 L 
Call CH EM EQ2 for cell i 

I 
i = i+1 

No 

Yes 

t = t + At 

Yes 

1 No 

Stop) 

Figure. 5: Calling sequence in a reacting-flow program. The parameter imax gives t. ax gives the number of cells. 
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5.4    Practical Considerations 

To help the beginning user of CHEMEQ2, some observations and suggestions are made for optimizing the 

use of the subroutine. First, the improvement produced by adding corrector iterations is problem specific. 

Some systems, such as cesium integration discussed in Section 6.1, converge in about three iterations. Other 

systems, such as the hydrogen-air mechanism discussed in Section 6.2, take much longer. Lowering e may 

be more effective in improving accuracy than increasing Nc depending upon the problem. If a very accurate 

result is required and the added computational cost can be tolerated, increasing the number of corrector 

iterations dramatically is very effective [19]. 

As stated earlier, a-QSS is not guaranteed to be stable for nonlinear systems. If instability is seen, the 

user can use the convergence-based stability check on At discussed in Section 6.2 if Nc > 3. The lines which 

implement this check have a "D" in the first column. Many compilers allow the user to include these lines 

in the compilation by specifying a compiler option such as -d_lines. Without such an option, these lines 

are treated as comments and not compiled. Since most reacting-flow problems will not require the stability 

check, this implementation is most efficient. If the stability check is needed on a platform that does not 

support such a compiler option, then the lines must be manually included. 

The two options for approximating a described in Section 4.1 are included in the code, but the one labeled 

Pade (b) is recommended. Although the combination of Pade (a) in Eq. (41) and the linear approximation 

is Eq. (39) are closer to the exact curve for a (see Fig. 2), the single equation given in Eq. (43) provides 

comparable accuracy in the species concentrations and eliminates an expensive logic check. 

Finally, users may find the variable groupings in the argument lists of CHEMEQ2 and CHEMSP incon- 

venient. The user may wish to move arguments from one list to the other, concentrating the parameters 

that change regularly in the CHEMEQ2 argument list, and relegating to CHEMSP those parameters that 

need not be changed after an initialization. This could save the additional calls to CHEMSP to reset a single 

variable. For instance, if the source term calculation depends upon the value of the independent variable t, 

then this variable could be passed through the CHEMEQ2 argument list rather than set through a call to 

CHEMSP. 
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Table 1: Cesium Mechanism 

Reaction ki 

1)        02- + Cs+ k-\Cs + 02 5 x 10-8 cm3/s 
2)        Cs+ + e h Cs 1 x 10-12 cm3/s 
3)       Cs ^Cs+ + e 3.24 x 10-3s-x 

4)        0;ho2 + e 4x lO^s"1 

5)       02 + Cs + Mh Cs02 + M 1 x 10-31 cm6/s 
6)       02 + e + 02^Oj+02 1.24 x 10-30 cm6/s 
7)       02 + e + N2 ^ 0; + N2 1 x IQ"31 cm6/s 

6    Numerical Results 

Two examples are described here in detail. The first is a system of equations involving cesium and cesium 

ions that was originally suggested by D. Edelson of Bell Laboratories. This test was used to compare the 

original CHEMEQ subroutine to other stiff solvers, including those of Gear and Kregel, as shown in [2]. The 

second set of tests involves a hydrogen-oxygen combustion mechanism and focuses on the effect of corrector 

iteration on the timing and accuracy of <*-QSS. Two reacting-ftow applications are then discussed briefly in 

Section 6.3. 

6.1    Cesium Tests 

The cesium mechanism, shown in Table 1, involves seven species and seven one-way reactions. The rate 

constants k{ are fixed at the values shown. The inert collision partner, M in reaction 5, may be Cs, Cs02, 

02, or N2, so the concentration of M used to calculate the reaction rate is the sum of the concentrations of 

these four species. The initial conditions and the solution values at 1000 seconds used for the accuracy study 

are included in the Table 2 [2]. These solution values, which we call the «accepted values" in the following 

error analysis, are the common result of running LSODE and CHEMEQ2 at excessively high accuracies. 

The species number densities, shown in Fig. 6, were generated using CHEMEQ2. The figure shows a 

fast initial transient, which is followed by a slow evolution toward equilibrium. A logarithmic scale in time 

is required to show this evolution. Equilibrium is not reached by 1000 s, so comparing the solution at this 

time to an accepted solution provides a suitable check of a kinetic integrator. 
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Table 2: Initial and t = 1000 sec species concentrations for the the cesium mechanism test problem. 

Species y,(0s)(cm-3) yi(1000s)[cm-a] 
e lx 102 4.9657897283 x 104 

o2- 5.2 x 102 2.5913949444x 104 

Cs+ 6.2 x 102 7.5571846728 x 104 

Cs 1 x 1012 1.5319405460 x 103 

Cs02 0 1.000 x 1012 

N2 1.4 x 1015 1.400 x 1015 

o2 3.6 x 1014 3.590 x 1014 
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Figure 6: Species number densities as a function of time for the cesium mechanism test problem. 
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the stability ratio, R, defined by Eq. (55), for Oa~. Ä is calculated with At used by CHEMEQ2. 

Timestep histories for CHEMEQ2 and for CHEMEQ are shown in Fig. 7. As mentioned earlier, the 

asymptotic update used by CHEMEQ is unstable under some circumstances [19]. The linear stability analysis 

of CHEMEQ led to a parameter R, defined by 

R=*i(i-L- 

which we call the stability ratio. The average timescale, r, is given by 

1       1/1        1 

> + ;? 

(55) 

(56) 

for the initial value r° and the predicted value r». Stability requires R < 2 for any species integrated with 

the asymptotic method [19]. If the timescale is constant or decreasing, this stability constraint is satisfied. 

If the timescale is increasing, At may be large enough to make the method unstable. 
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During the first 200 seconds of the simulation (i.e., the span of time shown in Fig. 7), CHEMEQ treats 

only OJ with the asymptotic update, so R for this species is included in the figure. The values of At are 

read from the vertical axis to the left of the figure, and the values of R correspond to the axis on the right. 

The stability limit of R = 2 is marked by a dashed horizontal line. We see that R becomes larger than 2 after 

approximately 10 s, and CHEMEQ starts producing oscillations in At approximately 10 s after that. These 

oscillations cease after R returns to values lower than 2.  CHEMEQ2 does not produce these oscillations, 

although the accuracy-based timestep constraint lowers the timestep in this region. 

A series of studies evaluated the accuracy of CHEMEQ2 compared to CHEMEQ. These solved the Cs 

test problem given above and used the reference solution at 1000 s as a benchmark. The tests varied the 

value ofe from 10_1 to 10-6. Additional tests fixed e and varied Nc from one to ten. Figure 8 summarizes 

the results of the tests by showing the rms error as a function of CPU time, which was scaled by the smallest 

increment the timing routine could resolve.  The CHEMEQ2 results are shown as a series of overlapping 

profiles of the shape shown in the schematic in Figure 9. Each profile is for a fixed value of e, but the points 

on it correspond to different values of Nc. 

The error computed for each computation (fixed e and Nc) is based on the the accepted values at 1000 s. 

The relative error e,- for each species i 

^.accepted — ^'.calculated ,__> 
e« =  (57) 

y», accepted 

A root-mean-square error for the six reacting species (excluding the inert N2) is: 

erms = \l^f£. (58) 

There is only a single curve for CHEMEQ in Figure 5. Each point on this curve corresponds to a different 

value of e. The hybrid method, as implemented in CHEMEQ and used in this problem, becomes unstable 

and the solutions are corrupted if multiple corrector iterations are used. Lorenzini and Passoni, however, 

were able to use multiple corrector iterations successfully in other implementations of the hybrid method for 

other problems [29]. CHEMEQ2 does not have this instability problem. 

For a single-iteration and large enough e, the CHEMEQ2 results lie roughly along the CHEMEQ curve. 

In this case, the CHEMEQ2 simulation takes less time, but gives a slightly less accurate solution.  As e is 
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Figure 9: Schematic of the types of profiles for fixed e in Fig. 8. The numbers next to each symbol give the 
corresponding value of yVc. As described in the text, the solutions for the cesium test problem converge after 
about three iterations. 
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decreased, the CHEMEQ results do not give the same increase in accuracy for the increased computational 

costs. 

The curves shown in Figure 5 can be explained by comparing the CHEMEQ and the CHEMEQ2 al- 

gorithms. The CHEMEQ stiff predictor is identical to the CHEMEQ2 predictor in the limit as <*° - 1, 

which corresponds to p°At - oo. The CHEMEQ stiff corrector, however, uses different average values for 

q and p than the CHEMEQ2 corrector, and also effectively uses the PAt ^ 0 limit value of a = 0.5. This 

inconsistency in the effective a between CHEMEQ V stiff predictor and corrector limits the growth of At for 

CHEMEQ. Therefore, CHEMEQ takes a smaller timestep than CHEMEQ2 for the same e, and, for moderate 

accuracy, this inconsistency in a does not affect the accuracy of the solution. The best accuracy achievable 

by CHEMEQ does suffer from this inconsistency, however, so as e becomes smaller, CHEMEQ2 gives more 

accurate answers than CHEMEQ. 

The CHEMEQ2 curves for a fixed e show dramatic increases in accuracy after just a few iterations. After 

about three iterations, the curves for a given e flatten, which indicates that the method has converged to a 

final corrector value, and additional iterations do not improve the accuracy. The computational expense in 

adding iterations is less than that in reducing e for similar improvements in accuracy. As e is lowered, 

accuracy improves because the timestep is decreased. As the number of iterations increases, accuracy 

improves because the corrector is able to refine the linear approximation for p and , used to calculate 9~ 

and p for the corrector equation, Eq. (36). Not all systems will converge for such low values of Nc, but, in 

general, iterating the corrector even one or two times improves the accuracy. 

For the CHEMEQ2 curve for e = 0.1, the simulations took so little time that the precision of the timing 

routines was not sufficient to measure differences in timing between these runs. In addition, the calculations 

were performed on a computer that allows access to multiple users. These affects contribute to the error and 

uncertainty in the low-resolution data. 

6.2     Hydrogen-Air Tests 

The tf2-air combustion mechanism used consists of twenty-five reversible reactions involving nine species 

(including inert N2) [34]. This mechanism is closely related to that used by GRIMcch.  The reaction rates 
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Figure 10: Solution for the single-point hydrogen-air integration. 

are calculated using the modified Arrhenius form 

x10 -4 

kr = ATBexp(-C/T) (59) 

where T is the temperature. The rate kr is either a forward or backward rate. The parameters A, B, and C 

for both the forward and backward rates for each reaction are given in reference [19]. Initially the mixture 

is at 1000 A', a pressure of 1 atmosphere, and in the ratio 2:1:3.76 for Hi'Oi-No- These conditions lead 

to initial number densities on the order of 1018cm~3 for these three species. A minimum number density 

of 10~30cmT3 was imposed on the other species to prevent numerical difficulties. Nitrogen is inert for the 

mechanism, and thus acts as a diluent. 

Selected species' number densities for this problem are presented as a function of time in Fig. 10.  The 

figure shows that after an induction time of about 3.4 x 10~4 s,  //2 and On are converted to HnO in a 
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relatively short time period. During this induction time radicals are formed that eventually initiate the 

rapid conversion of H2 and 02. Here, we focus on the H number density profile, which has a peak in the 

reaction zone that is difficult to predict accurately. A series of calculations examined the effect of e and Nc 

on the location and the value of this peak. The errors in these parameters are calculated as 

t   error - ^P ~ preference II tp error _  ( 

P,reference 

(n„)p error = "^ "("preference« 

("preference (bl) 

for peak number density value (nH)p at time tp, compared to reference values. The reference values were 

obtained by integrating the equations with CHEMEQ2 for increasing Nc and decreasing e values, until 

the solution ceased changing. The solution was then verified by comparison with a solution obtained by 

a simple modified Euler method using an exceptionally low error tolerance. Table 3 lists these errors and 

the CPU time required to reach 5 x 10"4 seconds for a variety of e and Nc values. These calculations were 

performed on a DEC Alpha workstation, and the integration time is scaled relative to the e = 1(T3, Nc = 1 

simulation. These calculations did not assume that the thermodynamic state or the rate constants remained 

fixed during a chemical timestep. The temperature was recalculated for each corrector iteration based on the 

species number densities calculated from the previous iteration. The rate constants were then recalculated 

with this updated temperature. Repeating this calculation for every iteration is very expensive, and the 

performace of the method will improve substantially if the rate constants are calculated once and fixed for 

the chemical timestep. 

Figure 11 shows results of integrations for e = 10~4 and Nc = 1, 5, and 10. This should be contrasted 

to the cesium calculations of the previous section that converged by Nc = 5. In this case, the profiles 

are converging to the reference solution, but they have not completely converged by Nc = 10. Note that 

CHEMEQ results are essentially equivalent to the Nc = 1 case. Table 3 suggests that reducing e may be a 

more efficient way to improve the accuracy of the solution than increasing the iteration count. The errors are 

not of the same order as e, however, and reducing e by an order of magnitude does not result in a comparable 

reduction in the error. The errors in the time-to-peak and the peak value are not even comparable, with the 
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Figure 11:   Hydrogen number density for Nc = 1, 5, and 10, and e — 10  4.   The dark, solid line is the 
reference solution, and the numbers next to the remaining curves indicate the value of Nc for each profile. 
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Table 3: Results obtained by varying e and Nc for the hydrogen-air reaction integration. 

It)"4 

IO-5 

3(a): tp error 
Nc = l 

6.66 x 10~2 

2.79 x 10-2 

1.06 x 10-2 

2.97 x KT^ 
1.10 x 10~2 

3.67 x IQ"3 

10 
1.84 x 10~2 

6.29 x IO-3 

1.97 x IO-3 

IO-3 

IO-4 

IQ-5 

Nc = l 
3(b): (nH)p error 

0.392 
0.146 

4.48 x 10-2 

0.166 
4.56 x 10-2 

1.27 x IQ-2 

10 
9.40 x 10~2 

2.35 x 10-2 

6.49 x IQ-3 

3(c): Scaled CPU times to 5 x 10~4 

£ 

IF7" 
io~4 

io~5 

Ne = l 
1.00 
3.19 
11.8 

2.92 
9.92 
36.7 

10 
5.33 
18.3 
67.5 

Table 4   Errors in t   and (nH)p for e = 10"» and JVC = 1, 5, 10, and 1000, and the scaled CPU time required 
for each simulation to reach t = 5 x 10-4 seconds. required 

iterations tp error yn error CPU time 
1 6.66 x 10-'2 

0.392 1.00 
5 2.97 x 10-2 

0.166 2.92 
10 1.84 x 10~2 

9.40 x 10~2 
5.33 

1000 2.71 x 10-6 
1.77 x IQ"4 
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(n*)p much more prone to error than tp. This peak is very difficult for a low-order method to calculate. A 

higher-order method that employs information from several ümesteps would prov.de a much better result 

for this problem. 

The question remains as to how accurate the integration can become if the number of iterations is 

increased dramaUcally. The results for e = 10~3 from Table 3 are repeated in Table 4, and additional results 

obtained using 1000 corrector iterations are also included. For the Nc = 1000, the error in the peak value 

is an order of magnitude less than e, and the time-to-peak error is three orders of magnitude lower than e. 

This suggests that the corrector equation Eq. (36) provides an accurate representation once it is sufficiently 

converged. Again, the thermodynamic state and the rate constants were recalculated for every corrector 

iteration, and the high CPU times are due in part to this largely avoidable expense. 
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Figure 12: Hydrogen number density as the integration approaches equilibrium, e = 10-5, Nc = 10. The 
dashed line is the standard CHEMEQ2 result. The profile given by open circles includes the stability 
constraint on At (see Eq. (52)). 

An instance which requires the stability check on At described in Section 4.2 is illustrated in Fig. 12. This 

figure shows the H profile as the system reaches equilibrium. These results indicate that the accuracy-based 

timestep can be too large for the corrector iteration to remain stable despite the fact that the stability analysis 

indicated that o-QSS is A-stable for linear problems. Note that the scale in Fig. 12 is exaggerated; the range 

covered by the number density axis spans approximately 1% of the equilibrium value. This instability is not 

a problem in reacting-flow applications, as the frequent restarting at new global timesteps limits how large 

the timestep becomes. In this single-point, integration, however, the instability is seen. The oscillations in 

the number density disappear when the stability constraint given in Eq. (52) is required, and the predicted 

equilibrium value agrees well with the reference solution. 
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6.3    Reacting-Flow Solutions 

Two reacting-flow cases will be briefly discussed here. These results are provisional, as no rigorous, systematic 

studies have been performed. A thorough comparison between integration methods would include the effects 

of implementation choices, accuracy requirements, and stiffness. The stiffness issues are not limited to 

the chemical mechanism itself but also include coupling of the chemical timescales and the fluid dynamics 

timescales (i.e., how much the integrator subdivides the global timestep in order to perform the chemistry 

integration). Such a study is planned for the future. However, from our experiences, we expect the results 

described below to be typical. 

Uphoff et al. [35] studied two-dimensional detonation formation using an H2/02 mechanism with 18 re- 

actions and 8 species. They compared process-split reacting-flow calculations using CHEMEQ and METAN1 

[36] as the chemistry integrator. METAN1 is a general stiff solver which employs a semi-implicit mid-point 

rule and extrapolation to a «zero stepsize» solution [37-39]. For this specific set of calculations, CHEMEQ 

performed the required chemical integrations in approximately one-sixth of the time required by METAN1. 

Documentation of accuracy parameters used and solution options chosen for the calculations is not available. 

An additional calculation was performed in order to compare the efficiency of a-QSS to a Gear method. A 

one-dimensional hydrogen-air premixed flame was simulated using a process-split method [33] which employed 

FCT for integrating the fluid convection [40]. The chemistry integration was performed using CHEMEQ2, 

and also using DEBDF, which employs a variable-order Gear method as implemented in LSODE. DEBDF is 

part of SLATEC, a library of computational subroutines available on Silicon Graphics and Cray computers 

[41]. CHEMEQ performed the required calculations in approximately one-sixth the time required by DEBDF, 

which is coincidental^ the same factor seen in the detonation comparison versus METAN1. No extensive 

accuracy studies have been performed to ensure that the comparison was fair. For example, the accuracy 

parameters for CHEMEQ2 and DEBDF were simply set to the same value, even though the two codes do 

not use these parameters in exactly the same way. 
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7    Summary 

CHEMEQ2 is a general purpose integrator for a specific type of equations, namely those that are reasonably 

represented by the form in Eq. (1). CHEMEQ2 employs a very low overhead, moderately accurate, low-order 

technique. To obtain results for most physical models with an acceptable degree of accuracy, CHEMEQ2 can 

be extremely efficient. In many areas where problems are so computationally expensive they seem impossible 

to do by other methods, CHEMEQ2 gives accurate results in a reasonable amount of time. CHEMEQ2 can 

also be employed in the development of chemical or mathematical models when efficiency is important, but 

obtaining very precise answers may require extensive computational expense. CHEMEQ2 is optimized to 

provide three or four significant digits accurately, not eight, but this high level of accuracy can be reached 

with an appropriate timestep criterion and enough corrector iterations. 

CHEMEQ2's forte lies in the solution of the stiff ordinary differential equations associated with chemically 

reactive flow problems. Here the reaction sources are split off from the hydrodynamic part of the equations 

and solved separately for each hydrodynamic timestep and at each grid point. The moderate accuracy of 

the methods used to solve the hydrodynamic equations suggest that the application of a more sophisticated 

technique, rather than a low-order, low overhead method like CHEMEQ2, would waste valuable computer 

time and could possibly render the problem impossible. 

A potential user must be aware that CHEMEQ2 is not completely user-proof or problem-independent 

and cannot always be used as a black box. The method is not identically conservative, and the minimum 

values should be chosen with some thought since they can become sources of spurious errors if not chosen 

small enough initially. Although CHEMEQ2 overcomes some stability problems in the original algorithm, 

it may still require the use of the stability check described in Section 4.2. The user is referred again to 

Section 5.4 for practical information regarding the use of CHEMEQ2. 

Since CHEMEQ2 uses a convergence-dependent algorithm and an adaptive timestep, the overall timing 

will be strictly problem-dependent. One factor will be the coupling between the relaxation times of the 

equations. The most expensive operation in the algorithm is the derivative function evaluations, of which 

there is one required in the predictor step, and one for each corrector iteration. If CHEMEQ2 is applied as 
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designed, the subroutine can solve large systems of stiff ordinary differential equations very efficiently. 
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9    Appendix A - CHEMEQ2 Variable List 

FORTRAN 
variable 

__ Table 9: Variable listing and descriptions. 
Type/Scope    Same As Description 

alpha 
ascr 
d(i) 
dt 
dto 

dtc 
dtg 
dtmin 
dtmn 

R/L 
R/L 
R/A 
R/L 
R/L 

R/L 
R/A 
R/L 
R/A 

epscl R/L 

eps R/L 

epsmax R/A 

epsmin R/A 

epsmn R/A 
epsmx R/A 
gcount I/L 

gsub E/A 
l I/L 
iter I/L 
itermax I/A 
itennx R/A 
lo I/L 
n I/A 
nd I/L 

ns I/A 
prt R/A 
q(i) R/A 
qs(i) R/A 

qt R/A 
rcount I/L 

Type: R = Real, I = 

a, Eq. (7) 

Piyt, Eq. (1) 
A* 

1/epsmin 

<r, Eq. (48) 

c from Eq. (47) 

£ from Eq. (46) 

«.-, Eq. (1) 
<??,    Eqs.    (35), 
(38) 
qi, Eq. (38) 

solution parameter used in update 
scratch (temporary) variable 
loss rate 

chemical timestep used by the integrator 

stores timestep; used to scale rtaus when timestep 
is reduced 

diagnostic value printed when At < dtmin 
global timestep; range of integration 
minimum timestep allowed 
sets dtmin via CHEMSP 

intermediate   variable  used   to   avoid   repeated 
divisions 

maximum   correction   term,   finally   scaled   by 
1/epsmin 

repeat   timestep   if correction   is  greater   than 
epsmax*epsmin*y(i) for any i 

accuracy  parameter  for  determining  the   next 
timestep 

used to set epsmin via CHEMSP 
used to set epsmax via CHEMSP 

counter for calls to gsub since the last call to 
CHEMCT 

source term subroutine; supplies d(i) and q(i) 
index 

counter for corrector iterations 
number of corrector iterations to perform 
used to set itermax via CHEMSP 
unit number for output 
number of equations integrated 
dimension of species arrays; maximum number of 
species 

number of entries in ymin reset via CHEMSP call 
nonzero value supresses output from CHEMSP 
production rate 
initial production rate 

a-weighted average of q 

counter for steps  redone since  the last call  to 
CHEMCT 

Integer, E = External; Scope: L = Strictly Local, A^Pgedas Argument. 
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Table 9 Continued 
FORTRAN Type/Scope Same As 
variable 
rswitch R/L 5.9659 

rtau(i) R/L At/Ti 
rtaub R/L plAt = At/n 
rtaui R/L At/Ti 

rtaus(i) R/L At/rf 

rteps R/L ^* 
scri R/L — 
scr2 R/L — 
scrarray R/L — 
scrtch R/L — 
sqreps R/A 5V£ 
stab R/L — 
tfd R/L — 

Description 

tgcnt 

tmk 
tn 

tnot 
trcnt 

ts 

I/L 

R/A 
R/A 

R/A 
I/L 

R/A 

tstart R/A 

y(i) R/A 
yO(i) R/A 

yl(i) R/A 
yml(i) R/L 
ym2(i) R/L 
ymin(i) R/L 
ymin(i) R/A 
ys(i) R/L 

Type: R = = Real, I 

t-t" 

yf from Eq. (2) 

»? 
% 

.<:('-1) 

,<'-2) 
2/, 

Eqs. 
(36) 

(35) 
from 
and 

value of At/r used to switch between Eqs.(39) and 
(41) when Pade (a) is used 
ratio of timestep to timescale 
At times average p from Eq. (37) 
holds rtau(i) to avoid multiple array references 
ratio of timestep to initial timescale for current 
timestep 
estimate for y/a in Eq. (50) 
scratch (temporary) variable 
scratch (temporary) variable 
scratch (temporary) variable array 
scratch (temporary) variable 
parameter used to calculate initial timestep 

WAyf^-^WßAyf^; see Eqs. 52) and (53) 
round-off parameter used to determine when inte- 
gration is complete 
total   number  of  calls   to   gsub   for  all   global 
timesteps 
call identifier for CHEMCT 
current value of the independent variable relative 
to the start of the global timestep 
used to set tstart via CHEMSP 
total   number   of   steps   redone   for   all   global 
timesteps 
independent variable at the start of the chemical 
timestep 
independent  variable at  the start of the global 
timestep 
species concentrations array 
initial   concentrations   for   the   global   timestep 
passed to CHEMEQ 
predicted value from Eq. (35) 
previous corrector iterate; see Eq. (51) 
previous corrector iterate; see Eq. (51) 
minimum concentration allowed for species i 
set ymin(i) via CHEMSP 
initial concentrations for the chemical timestep 

Integer, E = External; Scope: L = Strictly Local, A = Passed as Argument 
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10 Appendix B: Code Listings 

10.1    CHEMEQ2 Code Listing 

subroutine chemeq2(dtg, gsub, n, y) 
c 

cd* ************** * * * + * „ + + + + + + + + + + + + + + 

cd 

cd chemeq2(dtg, gsub, n, y) 
cd 

cd original chemeq development: 

cd originators: t.r. young nrl 1982 

cd vax version: t.r. young nrl code 4040        may i983 
cd Workstation: g. patnaik berkeley research    jun 1995 
cd 

cd chemeq2 development: d.r. mott    nrl code 6404       may 1999 
cd 

cd 

cd Description: Subroutine chemeq2 solves a class of "stiff" UU1: 

cd associated with reactive flow problems that cannot be readily 

cd solved by the standard classical methods. In contrast to the 
cd original chemeq subroutine, this version uses the same 

cd quasi-steady-state update for every species regardless of the 
cd timescale for that species. An adaptive stepsize is chosen to 
cd give accurate results for the fastest changing quantity, and a 
cd stability check on the timestep is also available when the 
cd corrector is iterated. 

cd 

ODEs 

cd 

cd NOTE:  The accuracy-based timestep calculation can be augmented 
cd with a stability-based check when at least three corrector 
cd iterations are performed. To include this check, "uncomment" 

cd the lines that start with "D", or use the compiler flag "-d_lines" 
cd if available to compile the code including these lines.  If the 

cd lines are manually uncommented, the continuation characters 

cd must be placed in the correct column.  For most problems, the 

cd stability check is not needed, and eliminating the calculations 
cd and logic associated with the check enhances performance 
cd 

cd The routine assumes that all of the integrated quantites and the 
cd time step are positive. 
cd 
cd 
cd dtg reai 
cd 
cd 

argument list definition (name, type, description, input vs. output): 

the interval of integration or the 
range of the independent variable. 
0.0 <= t <= dtg. (global timestep) 

Cd   gsub real        the name of the derivitive function i 
evaluator subroutine. 

cd   n integer     the number of equations to be       i 

integrated, an error exisis if n is 
c greater than nd set by the parameter 

statement. 
Cd   y(n) real        the initial values at call time   i/o 

and the final values at return time. 
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cd 

cd   Language and limitations: This subroutine is written in standard 

cd   FORTRAN 77. For high accuracy, this routine should be compiled 

cd   using whatever "double precision" flag is appropriate for the 

cd   platform being used (such as "f77 -r8 . . . .") 

cd 

cd   Entry points: Four entry points are provided for flexibility and 

cd   optimum control.  This structure was maintained from the original 

cd   chemeq subroutine to ensure compatiability with previous 

cd   applications that use chemeq. 

cd 

cd   chemeq2:  advances the equations the given increment 'dtg'. 
cd 

cd   chemct:  informative, prints the values of the indicative 

cd counters listed below; 

cd 1. the number of derivative function evaluations. 

cd 2. the number times the integration step was restarted 

cd due to nonconvergence of the predictor-corrector 

cd scheme. 
cd 

cd   chemsp: provides the user with the option to reset the most 

cd important control parameters. 
cd 

cd   chempr:  informative, prints out internal variables for diagnostic 

cd purposes. 
cd 

cd   subroutines referenced: 
cd 

cd   gsub;   whose actual name and definition are supplied by the user 

cd is called to obtain the derivitive functions. 
cd 

cd   call gsub(y, q, d, t) 

cd   argument list to gsub; 
cd   y(n) real     current values of the dependent     i 
cd variable. 

cd   q(n) real     calculated formation rates. o 

cd   d(n) real     calculated loss rates. o 

cd   t real     current value of the independent    i 
cd variable. 
cd 

cd   eherner: Called whenever an error is detected. Currently the 

cd only error recognized is a time step that is too small. 
cd 

cd   call chemer(y, n) 

cd   argument list to eherner;   (same definition as "chemeq2"). 
cd 
cd* ********************************** 

c 

implicit none 
integer nd 

parameter   (nd = 10) 
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external gsub 

integer    n, ns, lo, i 

integer     iterraax, iter, itermx 
c 

c the following are counters (this call & total) for gsub calls 
c     and timestep repeats 
c 

integer gcount, rcount, tgcnt, trcnt 
c 

real ts, tn, tfd, tmk 
real y(n) 

real ymin(nd), ymn(nd) 

real q(nd), d(nd), rtaus(nd), yl(nd) 

real ys(nd), yO(nd), rtau(nd) 
real alpha, qs(nd) 

real scri, scr2> scrarray(nd) 

real epscl, dtg, dtmin, sqreps, tstart, dt, dto 
real epsmax, epsmin, rswitch 
real epsmx, epsmn, dtmn, tnot, prt 
real scrtch, ascr, eps 

real rtaui, rtaub, qt, pb, dtc, rteps 
c 

c  yml, ym2, and stab are used only for the stability check on dt 
D    real yml(nd), ym2(nd), stab 

data gcount,  rcount, tgcnt, trcnt/4*0/ 
data        itermax/1/, epscl/100.0/ 

data tfd/1.000008/, dtmin/1.0e-15/, sqreps/0.50/ 
data tstart, dt/2*0.0/, tn/0.0e+00/, q/nd*0.0/ 

data epsmax/10.0/, lo/16/, epsmin/1.0e-02/, d/nd*0.0/ 
data rswitch/ 5.965900 / 

c 

c 

c rswitch for 4-4 pade: 5.9659 
c 

cd    check input parameters. 

if(n .gt. nd) then 

write(lo, 1002) n, nd 

1002    format(5(/),'from-chemeq2-  :  no. of eq.s requested is too> 
large'/' requested C,i5,'), max. allowed (',i5,')') 
stop 

end if 
c 

c    initialize the control parameters. 
110    tn = 0.0e+00 

c 

c    store and limit to 'ymin' the initial values, 
do i = 1, n 

q(i) = 0.0 
d(i) = 0.0 
y0(i) = y(i) 

y(i) = max(y(i), ymin(i)) 
end do 
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c    evaluate the derivitives of the initial values. 

call gsub(y, q, d, tn + tstart) 

gcount = gcount + 1 

c 

c    estimate the initial stepsize. 

c 

c    strongly increasing functions(q >» d assumed here) use a step- 

c    size estimate proportional to the step needed for the function to 

c    reach equilibrium where as functions decreasing or in equilibrium 

c    use a stepsize estimate directly proportional to the character- 

c    istic stepsize of the function, convergence of the integration 

c    scheme is likely since the smallest estimate is chosen for the 
c    initial stepsize. 

scrtch = 1.0e-25 

do i = 1, n 

ascr = abs(q(i)) 

scr2 = sign(l./y(i),.l*epsmin*ascr - d(i) ) 
scrl = scr2 * d(i) 

scrtch = max(scrl,-abs(ascr-d(i))*scr2,scrtch) 
end do 

dt = min(sqreps/scrtch,dtg) 
c 

c    the starting values are stored. 
100     ts = tn 

c 

do i=l,n 

rtau(i) = dt*d(i)/y(i) 
ys(i) = y(i) 

qs(i) = q(i) 

rtaus(i) = rtau(i) 
end do 

c 
c 

c    find the predictor terms. 
101 continue 

c 
do i = l,n 

c 

c    prediction 
c 

rtaui = rtau(i) 
c 

c       note that one of two approximations for alpha is chosen: 

c       1) Pade b for all rtaui (see supporting memo report) 
c or 

c       2) Pade a for rtaui<=rswitch, 

c linear approximation for rtaui > rswitch 

c (again, see supporting NRL memo report (Mott et al., 2000) ) 
c 

c  Option 1): Pade b 
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c 

alpha = (180.+rtaui*(60.+rtaui*(ll.+rtaui))) 
&      / (360. + rtaui*(60. + rtaui*(12. + rtaui))) 

c 

c  Option 2): Pade a or linear 
c 

c        if(rtaui.le.rswitch) then 

c alpha = (840.+rtaui*(140.+rtaui*(20.+rtaui))) 
c & / (1680. + 40. * rtaui*rtaui) 
c        else 

c alpha = l.-l./rtaui 
c        end if 
c 

scrarray(i) = (q(i)-d(i))/(l.o + alpha*rtaui) 
end do 

c 

iter = 1 

do while(iter.le.itermax) 

c    limit decreasing functions to their minimum values. 
do i= l,n 

D ym2(i) = yml(i) 

D yml(i) = y(i) 

y(i) = max(ys(i) + dt*scrarray(i), ymin(i)) 
end do 

if(iter.eq.l) then 
c 

c the first corrector step advances the time (tentatively) and 

c  saves the initial predictor value as yl for the timestep check later 
tn = ts + dt 
do i=l,n 

yl(i) = y(i) 
end do 

end if 
c 

c    evaluate the derivitives for the corrector, 
c 

call gsub(y, q, d, tn + tstart) 
gcount = gcount + 1 
eps = 1.0e-10 

do i = l,n 

c 

rtaub = -5*(rtaus(i)+dt*d(i)/y(i)) 

c Same options for calculating alpha as in predictor: 
c 

c Option 1): Pade b 

c 

c 

alpha = (180.+rtaub*(60.+rtaub*(ll.+rtaub))) 
/ (360. + rtaub*(60. + rtaub*(12. + rtaub))) 
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c Option 2): Pade a or linear 

c 

c if(rtaub.le.rswitch) then 

c alpha = (840.+rtaub*(140.+rtaub*(20.+rtaub))) 

c &            / (1680. + 40.*rtaub*rtaub) 

c else 

c alpha = l.-l./rtaub 

c end if 

qt = qs(i)*(l. - alpha) + q(i)*alpha 

pb = rtaub/dt 

scrarray(i) = (qt - ys(i)*pb) / (1.0 + alpha+rtaub) 

c 

end do 

c 

iter = iter + 1 

c 

end do 

c 
c    calculate new f, check for convergence, and limit decreasing 

c    functions, the order of the operations in this loop is important, 

do i = l,n 

scr2 = max(ys(i) + dt*scrarray(i), 0.0) 

scrl = abs(scr2 - yl(i)) 

y(i) = max(scr2, ymin(i)) 

D       ym2(i) = yml(i) 
D       yml(i) = y(i) 

c 
if(.25*(ys(i) + y(i)).gt.ymin(i)) then 

scrl = scrl/y(i) 
eps = max(.5*(scrl+ 

& min(abs(q(i)-d(i))/(q(i)+d(i)+1.0e-30),scrl)),eps) 

c 
end if 

end do 

eps = eps*epscl 

c 
c    print out dianostics if stepsize becomes too small. 

if(dt .le. dtmin + 1.0e-16*tn) then 

write(lo, 1003) dt, tn, dtmin 
do i = l,n 

dtc = epsmin*y(i)/(abs(q(i)-d(i)) + 1.0e-30) 

write(lo, 1004) q(i), d(i), y(i), rtau(i), dtc, 
& q(i)-d(i),ys(i), y0(i), ymin(i) 

end do 

1003    format('l   chemeq error;   stepsize too small ! ! !', /, 
1 '     dt = ', lpel0.3, ' tn = ', d25.15, 
2 ' dtmin = ',el0.3, //, llx, 'q', lOx, 'd', lOx, 'y\ 

3 8x, 'rtau*, 8x, 'dtc', 7x, 'q - d',7x, 'ys', 
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c 

c 

4       9x, 'yO\ 8x, 'ymin') 
1004    format(5x, lpl2ell.3) 

dt = dtg - ts 

dt = min(dtmin, abs(dt)) 

call error diagnostic routine 
call chemer 

end if 

check for convergence. 

c The following section is used for the stability check 
D        stab = 0.01 

D        if(itermax.ge.3) then 
D do i=l,n 
D 

D 
stab = max(stab, abs(y(i)-ymi(i))/ 

fe (abs(yml(i)-ym2(i))+l.e-20*y(i))) 
D end do 
D        endif 

if(eps .le. epsmax 
D   &  -and.stab.le.l. 

&       ) then 

c 

c 

C 
c 
c 

c 

Valid step. Return if dtg has been reached. 

if(dtg .le. tn*tfd) return 
else 

c    Invalid step; reset tn to ts 

tn = ts 
end if 

perform stepsize modifications, 

estimate sqrt(eps) by newton iteration. 

rteps = 0.5*(eps +1.0) 

rteps = 0.5*(rteps + eps/rteps) 
rteps = 0.5*(rteps + eps/rteps) 

dto = dt 

dt = min(dt*(1.0/rteps + .005), tfd*(dtg - tn) 
&     ,dto/(stab+.001) 
&     ) 

begin new step if previous step converged. 

if(eps .gt. epsmax 

&     .or. stab, gt. 1 
&     ) then 
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rcount = rcount + 1 

c 

c       After an unsuccessful step the initial timescales don't 

c       change, but dt does, requiring rtaus to be scaled by the 

c       ratio of the new and old timesteps. 

c 
dto = dt/dto 

i = 1 

do while(i.le.n) 

rtaus(i) = rtaus(i)*dto 

i = i+1 
end do 

c 
c       Unsuccessful steps return to line 101 so that the initial 

c       source terms do not get recalculated, 

c 

goto 101 
end if 

c 
c     Successful step; get the source terms for the next step 

c     and continue back at line 100 

c 
call gsub(y, q, d.tn + tstart) 

gcount = gcount + 1 

go to 100 

c 
entry cheract (tmk) 

c  
c 
cd* ********************************** 

cd 
cd   chemct (tmk) 

cd   write out the values of the various indicative counters that the 

cd   program keeps. 

cd 
cd   argument list definition: 
cd   tmk real     a floating point number printed     i 

cd to identify the call. 

cd 
cd   output variable definition: 

cd   tmk real     floating point identifier. 
cd   gcount integer  number of derivative subroutine calls 

cd since the last call. 

cd   rcount integer  number of times stepsize was reduced 

cd since last call. 

cd   tgcnt integer  total of gcount to this call. 

cd   trcnt integer  total of rcount to this call. 
cd 
cd* ********************************** 

c 
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1000 

c 

c 

c 

c 

c 

cd* 

cd 

cd 
cd 

cd 
cd 
cd 
cd 
cd 
cd 
cd 
cd 

cd 

cd 
cd 

cd 

cd 

cd 

cd 
cd 

cd 

cd 
cd 
cd 
cd 

cd 
cd 

cd 

cd 
cd 
cd 

cd 
cd 

tgcnt = tgcnt + gcount 

trcnt = trcnt + rcount 

print out indicative counters. 

writeQo, 1000) tmk, gcount, rcount, tgcnt, 
trcnt 

format(' chemeq indices; tmk = ', lpel0.3, 

' gcount, rcount = ', 2i7, > totals: >, 2i7) 

reset counters, 

gcount = 0 

rcount = 0 

return 

entry chemsp(epsmn, epsmx, dtmn, tnot, itermx, ns, ymn, prt) 

************ * * * * * « # + + + + + + + + + + + + + ^ 

chemspCepsmn, epsmx, dtmn, tnot, itermx, prt) 

reset any local control parameters if their respective input 
values are greater than zero, default values are used if the 
input values are zero or less repectively. 

argument 
epsmn 

epsmx 

list definition 
real 

real 

dtmn 

tnot 

itermx 

ns 

ymn(nd) 

prt 

the maximum relative error allowed  i 

for convergence of the corrector step. 
default value:  1.0e-02 

this number provides the basis for  i 

deciding weather convergence can be 
achieved with out added stepsize 

reduction, if eps/epsmin is greater 
than epsmx further reduction is 
applied. 

default value : 10.0 

the smallest stepsize allowed.      ± 
default value:  1.0e-15 

the initial value of the independent i 
variable t. 

default value:  0.0 

i        number of times the corrector is applied 
default value:  1 

integer  number of entries in ymin to reset  i 

real 

real 

real 

real 

minimum values allowed for y        ± 
default value: 1.0e-20 

controls the output of chemsp.  any i 

non zero value suppresses all print 
output from this entry. 
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cd 
cd* ********************************** 

c 

epsmin = 1.0e-02 

if(epsmn .gt. 0.0)epsmin = epsmn 

if(epsmn .gt. 0.0)sqreps = 5.0*sqrt(epsmin) 

epscl = 1.0/epsmin 

epsmax = 10.0 

if(epsmx .gt. 0.0)epsmax = epsmx 

dtmin = 1.0e-15 

if(dtmn .gt. 0.0)dtmin = dtmn 

tstart = tnot 

itermax = 1 

if(itermx.gt. 0) itermax = itermx 

do i=i,ns 

ymin(i) = l.e-20 

if(ymn(i).gt.O.) ymin(i) = ymn(i) 

end do 

c 
c    print new values of control parameters. 

if(prt .eq. 0.0) then 
write(lo, 1001) epsmn, epsmx, dtmn, tnot, itermx 

write(lo, 1005) ns 
if (ns.gt.0) write(lo,1006) (ymin(i), i=l,ns) 

end if 

1001    formatC initalize "chemeq2" via "chemsp"', /, 
' epsmn, epsmx, dtmn, tnot, itermx = ', Ip5gl0.3) 

1005 formatC ns = ',15) 

1006 format(' ymin: ' ,50el2.3) 

return 

c 

c 

c 
entry chempr (y, n) 

c  
c 
c<i* ********************************** 

cd 
cd chempr (y, n) 

cd 
cd chempr may be called whenever an error occurs that can be 
cd attributed to the results of chemeq. a partial set of the internal 

cd variables is printed as a diagnostic. 

cd 
cd argument list definition: 
cd y(n)        r current values of the dependent variable.    i 
cd n          i the number of entries in y and ymin.         i 

cd 
cd* ********************************** 

c 



45 

write(lo, 1003) dt, tn, dtmin 
do 45 i = i,n 

dtc = epsmin*y(i)/(abs(q(i) - d(i)) + 1.0e-30) 
writeQo, 1004) q(i), d(i), y(i), rtau(i), 

dtc, q(i)-d(i),  ys(i), y0(i), ymin(i) 

c 

c 

c 

c 

1001 

return 
end 

subroutine chemer 

diagnostic routine for stiff o.d.e. solver -chemeq- 

print 1001 

format(5(/), • library version of -chemer- called.', /, 

* users may supply their own version for diagnostics.'', /, 
' no arguments are required.', /, 

'program will continue resetting the step size to min-', / 
'lmums if a normal return is made.', //, 

(stop 69) executed from library version of -chemer-') 

stop 69 
end 
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10.2    Example Driver Code and Source Term Subroutines 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 
c 
c 
c 

PROGRAM CESIUM 

This is the driver program for the seven-species cesium 

mechanism test problem. The code integrates the system 

MXCASE times using differnt values of the chemeq2 variable 

epsmin (set by passing an entry from array EPS through 

CHEMSP before each integration). 

PROGRAM SPECIFICATIONS. 

REAL       DSEC 

REAL       Y(10), YF(10), YMIN(iO), YI(10), EPSIL(IO), EPS(15) 

INTEGER     SPSYM(7) 

For this example, the external subroutine that calculates the 

source terms is called CSDFE. 

EXTERNAL CSDFE 

C 

C 
1000 

1001 

1002 

1003 

1004 

1005 

1006 

1007 

C 
C 

C 

C 

DATA        YMIN/10*1.0E-20/, MXCASE/9/, LO/16/ 

DATA        SPSYM/'02-', 'CS+', 'CS', 'CS02', '02', 'N2', 'NE'/ 
DATA        EPS/ 

.1, .05, .01, .005, 

.001, .0005, .0001, .00005, 

.00001, .000005, .000001, 
5.e-7, l.e-7,5.e-8,l.e-8 

,5.e-9, l.e-9,5.e-10,l.e-10 

/ 

FORMAT('CASE NO. ', 15, '    PARAMETERS;', /, 

' CONVERGENCE PARAMETER EPS = ', 1PE10.3, /, 

• INNER LOOP LENGTH;', 15) 
F0RMAT(/, '    SPECIE   Y - INITAL     Y - FINAL ', 

'  Y - SOLUTION  REL ERR') 
F0RMAT(5X, A4, 1P3E15.6, E10.3) 

F0RMAT(/, ' T - INITIAL = (', 1PE10.3, ') T - FINAL = (', 
E10.3, ')') 
F0RMAT(/' INTEGRATION STATISTICS;') 

FORMATC CPU TIME USED FOR INTEGRATION;', 1PE10.3, 

' SEC,  CPU TIME NORMALIZED;', 18) 

FORMATC SUM OF THE RELATIVE ERRORS SQUARED; ', 1PE10.3) 
F0RMAT(/) 

Note that the timing routines included may not work on 

all systems.  Extra timing options are included as comments. 

REAL+4 dtime, delta, tarray(2) 



integer tnorm 

EXTERNAL dtime 
delta = 1. 

C 

C 

C    INITIALIZE CONTROL PARAMETERS. 
C 

C       TSCALE is simply a normalization factor for the timing 

C       results. It can be used to compare results from differnt 

C       machines (by setting it to the time required for that 

C       machine to solve a standard problem of some sort) or to 
simply make the timing results more "friendly " 
TSCALE = 1.0/1024. 

C 

C       INLP allows the user to subdivide the interval over which 
C       each test is run. "  ~  ■  — 
C 

C 

C 

C 

C 

C 
C 

each test is run. For INLP=1, CHEMEQ2 is sent the full 

interval TF-TI (specified below) as the global timestep. 
INLP =1 ° r 

For this particular test, the electron number density is not 

C integrated. The other five reacting species are integrated, 
C and the electron density is found through charge conservation 
C This calculation is done within CSDFE.  Therefore NA = 5 is 
C the number of equations that are integrated, but NS = 7 is the 

C number of species.  Species to be integrated must be placed in 
C first NA positions within the Y array.  CHEMEQ2 only works with 
C these first NA entries since NA is passed in the argument list 
C below, but all NS values are available to and used by CSDFE 

NS = 7 

NA = 5 

"TI"  -  INITIAL TIME,   "TF"  -  FINAL TIME 
TI = 0.0 

C 
C 
C 

C    02- 

TF = 1000.0 

DELTAT = (TF - TI)/INLP 

C 

C    CS+ 

STORE INITIAL(TI = 0.0) AND FINALT(F = 1000.0) VALUES. 

YI(l) = 5.200E+02 

YF(1) = 2.59139492061D+04 

C 

C    CS 

YI(2) = 6.200E+02 

YF(2) = 7.55718460300D+04 

YI(3) = 1.000E+12 

YF(3) = 1.53194051722D+03 
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CS02 

YI(4) = 0. 

YF(4) = 9.99999923516D+11 

c 
c 02 

YI(5) = 3.600E+14 

YF(5) = 3.59000000051D+14 

c 
c N2 

YI(6) = 1.400E+15 

YF(6) = 1.40000000000D+15 

c 
c NE 

YI(7) = 1.000E+02 

YF(7) = 4.96578968239D+04 

c 
c LOOP OVER THE TEST CASES. 

DO 30 ICASE = 1, MXCASE 

WRITE(LO, 1000) ICASE, EPS(ICASE), INLP 

CALL CHEMSP(EPS(ICASE), 0., 0., TI, 5, ns, ymin, 0.) 

CPUT = 0.0 

C 

C    RESET "Y" TO INITIAL VALUES "YI". 

DO I = 1,NS 

Y(I) = YI(I) 
end do 

C 
C    SET TIMER. 

C Tl = SECNDS(O.O) 
delta = dtime(tarray) 

C 

C    INNER LOOP TO DETERMINE OVERHEAD OR RELATIVE STARTING EFFECIENCY 

C    OF ITEGRATION SCHEME BEING TESTED. 
DO ISTEP = l.INLP 

C 

C    CALL INTEGRATOR. 
CALL CHEMEq2(DELTAT, CSDFE, NA, Y) 

C 
end do 

C 

C    CALCULATE CPU TIME USED IN THE INTEGRATION PROCESS. 
delta = dtime(tarray) 

C DSEC = SECNDS(Tl) 

DSEC = tarray(l) 

C DSEC = delta 

CPUT = CPUT + DSEC 

TNORM = INT(CPUT/TSCALE + .5) 

C    Calculate final electron density from densities of other charges species 
Y(7) = Y(2) - Y(l) 

C 
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C    CALCULATE RELATIVE ERROR. 
DO I = l.NS 

EPSIL(I) = ABS(Y(I) - YF(I))/MIN(Y(I) , YF(I)) 
end do 

SUM = 0.0 

DO I = 1,NS 

SUM = SUM + EPSIL(I)**2 
end do 

C  Root-mean-square error is calculated using ns-1 (rather than ns) 
C  since N2 is inert. 
c 

sum = sqrt(sum/real(ns-l)) 
c 

C 

C    PRINT RESULTS. 

WRITE(L0, 1003) TI, TF 

WRITE(LO, 1001) 

DO 15 I = 1,NS 

15    WRITECLO, 1002) SPSYM(I), YI(I), YF(I), Y(I), EPSIL(I) 
WRITE(L0, 1004) 

WRITE(L0, 1006) SUM 

WRITE(LO,  1005) CPUT, TNORM 
WRITE(*,699) EPS(ICASE), 

&        CPUT, TNORM, sum 

699     format(lx,25HEPS, time, ticks, error: ,E7.I,2x,el0.4 2x 
&        I5,2x,el0.4) 

WRITE(L0, 1007) 
CALL CHEMCT(TF) 

30    CONTINUE 
STOP 69 

END 

subroutine csdfe(y, q, d, t) 
c 
cd ********** 

cd 
cd 

cd 

cd   description: 

cd   derivative function evaluator(gsub) for an atmospheric chemical 

cd   relaxation test problem involving cesium and cesium ions, format- 
ed   ion and loss rates are calculated for this set of "stiff ordinary 
C
H   J1 ?flal ec*uations" tha* was suggested by by d. edelson of 
cd   bell laboratories. 
cd 

cd   argument list definitions: 

^   y(i)        r   current values of the functions plus the    i/o 
extra data at the end of the array that may be 
passed back and forth between "csdfe" and the 
main program, locations in y(i) which represent 
the functions being advanced should not be 
tampered with here. 

♦■t*********************^ 

csdfe(y, q, d, t) 

cd 
cd 
cd 
cd 
cd 
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cd   q(i)       r   total formation rates. i 

cd   d(i)       r   total loss rates. i 

cd   t r   the value of the independent variable.       i 

cd 
c(j *********************************** 

c 
c local specifications. 

c   

real       ne, n2 

real       y(l), q(l), d(l) 

c 
c    utilize local storage for varibles. 

o2m = y(l) 

csp = y(2) 

cs  = y(3) 

cso2 = y(4) 

o2  = y(5) 

n2  = y(6) 

c        write(63,*) t 

c 
c    calculate electron density for local use and transmission back to 

c    the main program via y(7). however in this case this value should 

c    not be trusted since "chemeq" will not call the "gsub" with the 
c    latest function values after the final step has converged. y(7) 

c    will be one iteration behind in this case. y(7) and y(6) are 
c    examples tho, of how data may be transfered between the "gsub" and 

c    the main program. 
ne = max(csp - o2m, 0.0) 

y(7) = ne 

c 
c    calculate reaction rates. 

crl = 5.00e-08*o2m*csp 

cr2 = 1.00e-12*csp*ne 

cr3 = 3.24e-03*cs 

cr4 = 4.00e-01*o2m 
cr5 = 1.00e-31*o2*cs*(cs + cso2 + n2 + o2) 
cr6 = 1.24e-30*o2*o2*ne 

cr7 = 1.00e-31*o2*n2*ne 

c if(t.ge.700.) then 

c cr4= 0. 
c cr6 = 0. 

c cr7 = 0. 

c end if 

c 
c    calculate total formation rates (c(i)) and total loss rates (d(i)) 

c    for each species. 

c 
c    o2m 
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q(l) = cr6 + cr7 
d(l) = crl + cr4 

c 
c    cs+ 

c 
c    cs 

q(2) = cr3 
d(2) = crl + cr2 

q(3) = crl + cr2 
d(3) = cr3 + cr5 

c 
c    cso2 

q(4) = cr5 
c        q(4) = q(4) - 1.00e-31*o2*cs*cso2 
c        d(4) = - 1.00e-31*o2*cs*cso2 
c 
c    o2 

q(5) = crl + cr4 
d(5) = cr5 + cr6 + cr7 

return 
end 
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10.3    Output from the Sample Programs 

Running the cesium test problem as given with an "-r8" compiler flag (or equivalent) will result in the 
following screen output describing the case, unsealed and scaled run time, and the resulting rms error: 

EPS, time, ticks, error: 0 1E+00 0 9760E-03 1 0 4336E-02 

EPS, time, ticks, error: 0 5E-01 0 1952E-02 2 0 1035E-02 

EPS, time, ticks, error: 0 1E-01 0 5856E-02 6 0 1093E-03 

EPS, time, ticks, error: 0 5E-02 0 7808E-02 8 0 5876E-04 

EPS, time, ticks, error: 0 1E-02 0 2342E-01 24 0 9786E-05 

EPS, time, ticks, error: 0 5E-03 0 3611E-01 37 0 4845E-05 

EPS, time, ticks, error: 0 1E-03 0 8491E-01 87 0 9995E-06 

EPS, time, ticks, error: 0 5E-04 0 . 1200E+00 123 0 .5195E-06 

EPS, 

69 

time, ticks, error: 0 .1E-04 0 .2538E+00 260 0 .1154E-06 

Of course, run times will differ on different platforms, and the timing routines called by the driver routine 
may not be available on all systems. 

Additional output found in fort. 16 is given below. This file holds a more detailed account of the results 
of each integration, including a count of the number of times the source term subroutine was called and the 
number of timesteps that were redone. Included below is this information for the last calculation in the test 
problem, for EPS =    1.000E-05. 

CASE NO. 9 PARAMETERS; 
CONVERGENCE PARAMETER EPS =     1.000E-05 
INNER LOOP LENGTH; 1 
initalize  ''chemeq2'' via  ''chemsp'' 
epsmn,  epsmx,  dtmn,  tnot,   itermx =    1.000E-05 O.O00E+0O 0.000E+00 0.000E+00 

5 
ns = 7 
ymin: 0.100E-19      0.100E-19      0.100E-19      0.100E-19       0.100E-19 
0.100E-19    0.100E-19 

INITIAL = = ( 0.000E+00) T - FINAL = ( 1. 000E+03) 

SPECIE Y - INITAL Y - FINAL Y - SOLUTION REL ERR 
02- 5 200000E+02 2.591395E+04 2 591395E+04 9 164E-08 

CS+ 6 200000E+02 7.557185E+04 7 557185E+04 9 755E-08 
CS 1 000000E+12 1.531941E+03 1 531941E+03 2 271E-07 
CS02 0 000000E+00 9.999999E+11 9 999999E+11 1 .467E-08 
02 3 600000E+14 3.590000E+14 3 590000E+14 1 .485E-09 
N2 1 .400000E+15 1.400000E+15 1 400000E+15 0 .000E+00 
NE 1 -000000E+02 4.965790E+04 4 965790E+04 1 .006E-07 

INTEGRATION STATISTICS; 
SUM OF THE RELATIVE ERRORS SQUARED;  1.154E-07 
CPU TIME USED FOR INTEGRATION; 2.S38E-01 SEC, 

260 
CPU TIME NORMALIZED; 

chemeq indices; tmk 
313597    29 

1.000E+03 gcount, rcount 149451 3 totals: 

63 


